z-logo
Premium
Transport layer protocols and architectures for satellite networks
Author(s) -
Caini Carlo,
Firrincieli Rosario,
Marchese Mario,
Cola Tomaso de,
Luglio Michele,
Roseti Cesare,
Celandroni Nedo,
Potortí Francesco
Publication year - 2006
Publication title -
international journal of satellite communications and networking
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.388
H-Index - 39
eISSN - 1542-0981
pISSN - 1542-0973
DOI - 10.1002/sat.855
Subject(s) - computer science , transport layer , computer network , link layer , physical layer , application layer , transmission control protocol , protocol (science) , transmission (telecommunications) , distributed computing , telecommunications , layer (electronics) , wireless , network packet , medicine , chemistry , alternative medicine , organic chemistry , pathology , software deployment , operating system
Abstract Designing efficient transmission mechanisms for advanced satellite networks is a demanding task, requiring the definition and the implementation of protocols and architectures well suited to this challenging environment. In particular, transport protocols performance over satellite networks is impaired by the characteristics of the satellite radio link, specifically by the long propagation delay and the possible presence of segment losses due to physical channel errors. The level of impact on performance depends upon the link design (type of constellation, link margin, coding and modulation) and operational conditions (link obstructions, terminal mobility, weather conditions, etc.). To address these critical aspects a number of possible solutions have been presented in the literature, ranging from limited modifications of standard protocols (e.g. TCP, transmission control protocol) to completely alternative protocol and network architectures. However, despite the great number of different proposals (or perhaps also because of it), the general framework appears quite fragmented and there is a compelling need of an integration of the research competences and efforts. This is actually the intent of the transport protocols research line within the European SatNEx (Satellite Network of Excellence) project. Stemming from the authors' work on this project, this paper aims to provide the reader with an updated overview of all the possible approaches that can be pursued to overcome the limitations of current transport protocols and architectures, when applied to satellite communications. In the paper the possible solutions are classified in the following categories: optimization of TCP interactions with lower layers, TCP enhancements, performance enhancement proxies (PEP) and delay tolerant networks (DTN). Advantages and disadvantages of the different approaches, as well as their interactions, are investigated and discussed, taking into account performance improvement, complexity, and compliance to the standard semantics. From this analysis, it emerges that DTN architectures could integrate some of the most efficient solutions from the other categories, by inserting them in a new rigorous framework. These innovative architectures therefore may represent a promising solution for solving some of the important problems posed at the transport layer by satellite networks, at least in a medium‐to‐long‐term perspective. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here