Premium
Reduced complexity satellite broadcast receiver with interference mitigation in correlated noise
Author(s) -
AbuShaban Zohair,
Mehrpouyan Hani,
M. R. Bhavani Shankar,
Ottersten Björn
Publication year - 2018
Publication title -
international journal of satellite communications and networking
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.388
H-Index - 39
eISSN - 1542-0981
pISSN - 1542-0973
DOI - 10.1002/sat.1243
Subject(s) - computer science , satellite , interference (communication) , beamwidth , radio receiver design , noise (video) , antenna (radio) , carrier to noise ratio , electronic engineering , telecommunications , remote sensing , transmitter , signal to noise ratio (imaging) , physics , engineering , geography , channel (broadcasting) , astronomy , artificial intelligence , image (mathematics)
Summary The recent commercial trends towards using smaller dish antennas for satellite receivers and the growing density of broadcasting satellites necessitate the application of robust adjacent satellite interference cancellation schemes. This orbital density growth along with the wider beamwidth of a smaller dish have imposed an overloaded scenario at the satellite receiver, where the number of transmitting satellites exceeds the number of receiving elements at the dish antenna. To ensure successful operation in this practical scenario, we propose a satellite receiver that enhances signal detection from the desired satellite by mitigating the interference from neighboring satellites. Towards this objective, we propose an enhanced list‐based group‐wise search detection (E‐LGSD) receiver under the assumption of spatially correlated additive noise. To further enhance detection performance, the proposed satellite receiver utilizes a newly designed whitening filter to remove the spatial correlation among the noise parameters, while also applying a preprocessor that maximizes the signal‐to‐interference‐plus‐noise ratio. We exploit the structure of this filter and propose a reduced complexity LGSD (RC‐LGSD) receiver. Extensive simulations under practical scenarios show that the proposed receiver enhances the performance of satellite broadcast systems in the presence of adjacent satellite interference compared with existing methods. Also, under pointing error, RC‐LGSD exhibits similar behavior to that of the optimum receiver.