Premium
Rain granularity effects on bandwidth demand for faded DVB‐RCS systems
Author(s) -
AlMosawi Mohamed,
Khusainov Rinat,
Gremont Boris
Publication year - 2014
Publication title -
international journal of satellite communications and networking
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.388
H-Index - 39
eISSN - 1542-0981
pISSN - 1542-0973
DOI - 10.1002/sat.1085
Subject(s) - computer science , bandwidth (computing) , communications satellite , bandwidth allocation , broadband , granularity , dynamic bandwidth allocation , computer network , telecommunications , digital video broadcasting , resource allocation , real time computing , satellite , engineering , aerospace engineering , operating system
Summary Broadband satellite communication networks, operating at Ka band and above, play a vital role in today's worldwide telecommunication infrastructure. The problem, however, is that rain can be the most dominant impairment factor for radio propagation above 10 GHz. This paper studies bandwidth and time slot allocation problem for rain faded DVB‐RCS satellite networks. We investigate how using finer rain granularity can improve bandwidth utilization in DVB‐RCS return links. The paper presents a mathematical model to calculate the bandwidth on demand. We formulate the radio resource allocation as an optimization problem and propose a novel algorithm for dynamic carrier bandwidth and time slots allocation, which works with constant bit rate type of traffic. We provide theoretical analysis for the time slot allocation problem and show that the proposed algorithm achieves optimal results. The algorithm is evaluated using a MATLAB simulation with historical rain data for the UK. Copyright © 2014 John Wiley & Sons, Ltd.