Premium
The Evolution of Linearized Perturbations of Parallel Flows
Author(s) -
Criminale W. O.,
Drazin P. G.
Publication year - 1990
Publication title -
studies in applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 46
eISSN - 1467-9590
pISSN - 0022-2526
DOI - 10.1002/sapm1990832123
Subject(s) - inviscid flow , couette flow , vorticity , mathematical analysis , mathematics , vector field , boundary layer , shear flow , classical mechanics , boundary value problem , flow (mathematics) , mechanics , physics , geometry , vortex
The equations of an incompressible fluid are linearized for small perturbations of a basic parallel flow. The initial‐value problem is then posed by use of Fourier transforms in space. Previous results are systematized in a general framework and used to solve a series of problems for prototypical examples of basic shear flow and of initial disturbance. The prototypes of shear flow are (a) plane Couette flow bounded by rigid parallel walls, (b) plane Couette flow bounded by rigid walls at constant pressure, (c) unbounded two‐layer flow with linear velocity profile in each layer, (d) a piecewise linear profile of a boundary layer on a rigid wall. The prototypes of initial perturbation are the fundamental ones: (i) a point source of the field of the transverse velocity (represented by delta functions), (ii) an unbounded sinusoidal field of the transverse velocity, (iii) a point source of the lateral component of vorticity, (iv) a sinusoidal field of the lateral vorticity. Detailed solutions for an inviscid fluid are presented, but the problem for a viscous fluid is only broached.