Premium
Properties of Successive Sample Moment Estimators
Author(s) -
Barouch E.,
Chow S.,
Kaufman G. M.,
Wright T. H.
Publication year - 1985
Publication title -
studies in applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 46
eISSN - 1467-9590
pISSN - 0022-2526
DOI - 10.1002/sapm1985733239
Subject(s) - transcendental equation , estimator , mathematics , moment (physics) , transcendental number , monte carlo method , sample (material) , population , second moment of area , mathematical analysis , statistical physics , statistics , numerical analysis , physics , geometry , classical mechanics , thermodynamics , demography , sociology
Moment type estimation of characteristics of a successively sampled finite population requires finding a solution to a pair of transcendental equations. Some global properties of two structurally distinct pairs—a symmetric and an asymmetric pair—of such equations are presented. Results of a Monte Carlo experiment designed to compare the performance of estimators computed by solving these transcendental equation pairs are reported.