Premium
On Mean Convergence of Fourier‐Bessel Series of Negative Order
Author(s) -
Benedek A.,
Panzone R.
Publication year - 1971
Publication title -
studies in applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 46
eISSN - 1467-9590
pISSN - 0022-2526
DOI - 10.1002/sapm1971503281
Subject(s) - bessel function , mathematics , fourier series , series (stratigraphy) , order (exchange) , mathematical analysis , fourier transform , convergence (economics) , space (punctuation) , integrable system , pure mathematics , paleontology , linguistics , philosophy , finance , economics , biology , economic growth
The expansion of f ∈ L p (0, 1) Fourier series of Bessel functions of order converges to f in L p wheneverLet be the space of p ‐integrable functions with respect to the measure t dt and where { s n }, n = 1, 2, …, is the set of positive zeros of J v . Then, the expansion of in a Fourier series of functions ψ n , −1 < ν < −½, converges to in whenever
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom