Premium
TiK‐means: Transformation‐infused K ‐means clustering for skewed groups
Author(s) -
Berry Nicholas S.,
Maitra Ranjan
Publication year - 2019
Publication title -
statistical analysis and data mining: the asa data science journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.381
H-Index - 33
eISSN - 1932-1872
pISSN - 1932-1864
DOI - 10.1002/sam.11416
Subject(s) - skewness , transformation (genetics) , statistic , cluster analysis , algorithm , mathematics , jump , group (periodic table) , computer science , statistics , physics , biochemistry , chemistry , quantum mechanics , gene
The K ‐means algorithm is extended to allow for partitioning of skewed groups. Our algorithm is called TiK‐means and contributes a K ‐means‐type algorithm that assigns observations to groups while estimating their skewness‐transformation parameters. The resulting groups and transformation reveal general‐structured clusters that can be explained by inverting the estimated transformation. Further, a modification of the jump statistic chooses the number of groups. Our algorithm is evaluated on simulated and real‐life data sets and then applied to a long‐standing astronomical dispute regarding the distinct kinds of gamma ray bursts.