z-logo
Premium
Empirical relationships between environmental factors and soil organic carbon produce comparable prediction accuracy to machine learning
Author(s) -
Mishra Umakant,
Yeo Kyongmin,
Adhikari Kabindra,
Riley William J.,
Hoffman Forrest M.,
Hudson Corey,
Gautam Sagar
Publication year - 2022
Publication title -
soil science society of america journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.836
H-Index - 168
eISSN - 1435-0661
pISSN - 0361-5995
DOI - 10.1002/saj2.20453
Subject(s) - soil carbon , random forest , environmental science , predictive modelling , empirical modelling , empirical research , econometrics , computer science , machine learning , statistics , mathematics , soil science , soil water , simulation
Abstract Accurate representation of environmental controllers of soil organic carbon (SOC) stocks in Earth System Model (ESM) land models could reduce uncertainties in future carbon–climate feedback projections. Using empirical relationships between environmental factors and SOC stocks to evaluate land models can help modelers understand prediction biases beyond what can be achieved with the observed SOC stocks alone. In this study, we used 31 observed environmental factors, field SOC observations ( n  = 6,213) from the continental United States, and two machine learning approaches (random forest [RF] and generalized additive modeling [GAM]) to (a) select important environmental predictors of SOC stocks, (b) derive empirical relationships between environmental factors and SOC stocks, and (c) use the derived relationships to predict SOC stocks and compare the prediction accuracy of simpler model developed with the machine learning predictions. Out of the 31 environmental factors we investigated, 12 were identified as important predictors of SOC stocks by the RF approach. In contrast, the GAM approach identified six (of those 12) environmental factors as important controllers of SOC stocks: potential evapotranspiration, normalized difference vegetation index, soil drainage condition, precipitation, elevation, and net primary productivity. The GAM approach showed minimal SOC predictive importance of the remaining six environmental factors identified by the RF approach. Our derived empirical relations produced comparable prediction accuracy to the GAM and RF approach using only a subset of environmental factors. The empirical relationships we derived using the GAM approach can serve as important benchmarks to evaluate environmental control representations of SOC stocks in ESMs, which could reduce uncertainty in predicting future carbon–climate feedbacks.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here