z-logo
open-access-imgOpen Access
A novel ex vivo approach for measuring plasminogen activation upon established plasma clots
Author(s) -
Palazzolo Jason S.,
Medcalf Robert L.,
Hagemeyer Christoph E.,
Niego Be'eri
Publication year - 2022
Publication title -
research and practice in thrombosis and haemostasis
Language(s) - English
Resource type - Journals
ISSN - 2475-0379
DOI - 10.1002/rth2.12771
Subject(s) - plasmin , fibrin , fibrinolysis , chemistry , fibrinogen , ex vivo , streptokinase , in vivo , biophysics , context (archaeology) , biochemistry , in vitro , immunology , enzyme , medicine , biology , paleontology , microbiology and biotechnology , myocardial infarction
Abstract Background The fibrinolytic system plays a critical role in maintaining hemostasis. Central to fibrinolysis is the degradation of fibrin by plasmin, produced in the circulation following the activation of plasminogen by plasminogen activators (PAs). Accurately measuring the plasminogen activation rate is vital for the understanding of fibrinolytic processes, particularly in the context of thrombolysis. Yet, due to the insoluble nature of fibrin, in vitro and ex vivo investigations of PA‐mediated plasminogen activation have proven challenging. As researchers frequently adopt soluble fibrinogen fragments and/or alter the experimental system beyond what is physiologically relevant, they limit the validation and interpretation of their findings. Here, we present a novel, high‐throughput assay for measuring plasminogen activation rates on natural, plasma‐derived fibrin that optimally simulates in vivo conditions. Method Human plasma was used as the source of plasmin(ogen) and fibrin(ogen). “Halo‐shaped” plasma clots were produced in a 96‐well plate using a thrombin‐containing clotting mixture, ensuring that an optically compatible and plasma‐free center is maintained in each well. Subsequent additions of a plasmin chromogenic substrate and different PAs were followed by absorbance measurements over time to extract the corresponding enzyme kinetics information. Results and Discussion Validation experiments demonstrated the capability of our approach to accurately model fibrin‐dependent and ‐independent plasminogen activation as well as sensitively detect variations in plasminogen and fibrinogen plasma levels. Conclusion This assay allows a straightforward, yet powerful, measurement of plasminogen activation rates on established plasma clots, with the capability of properly assessing fibrin‐ and non–fibrin‐dependent plasminogen activation by various therapeutic PAs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here