Open Access
An unseen synchrony or recurrent resource pulse opportunity? linking fisheries with aeroecology
Author(s) -
Hansen Henry H.,
Pegg Mark,
Van Den Broeke Matthew,
Watkinson Doug,
Enders Eva C.
Publication year - 2020
Publication title -
remote sensing in ecology and conservation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.191
H-Index - 21
ISSN - 2056-3485
DOI - 10.1002/rse2.147
Subject(s) - mayfly , ecology , foraging , biology , freshwater fish , phenology , habitat , fishery , temporal scales , nocturnal , freshwater ecosystem , ecosystem , fish <actinopterygii> , nymph
Abstract Understanding insect and fish interactions from a spatial and temporal perspective can have implications on large‐scale phenology in freshwater systems, yet current information is limited. We employed a novel approach of combining information from acoustic telemetry for six freshwater fish species and weather radar to assess the phenology of mayfly emergence and foraging patterns of freshwater fish. We hypothesized that freshwater fish conduct synchronous movements with annual mayfly hatches as a pulse resource opportunity. Generalized additive models were developed to assess movement distance as a function of species and time; before, during, and after annual mayfly hatch events. A cross‐section abundance index was also employed to quantify dynamics of aerial mayflies. Hatch dynamics revealed nocturnal emergence behaviour with annual variations in intensity, spatial extent, and origin. We found that the hatch was likely a pulse resource feeding opportunity for channel catfish, common carp, freshwater drum, and walleye instead of a synchronized feeding event. Bigmouth buffalo and lake sturgeon utilized riverine habitat away from the hatch and did not likely forage on the emerging mayflies. Remote sensing of fishes and emergent insects using our approach is the first attempt at bridging the capabilities of fisheries ecology and aeroecology to advance movement ecology.