Premium
The asymptotic number of labeled connected graphs with a given number of vertices and edges
Author(s) -
Bender Edward A.,
Canfield E. Rodney,
McKay Brendan D.
Publication year - 1990
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.3240010202
Subject(s) - combinatorics , mathematics , physics , discrete mathematics
Let c ( n, q ) be the number of connected labeled graphs with n vertices and q ≤ N = (2 n ) edges. Let x = q/n and k = q − n . We determine functions w k ˜ 1. a ( x ) and φ( x ) such that c ( n, q ) ˜ w k ( q N ) e n φ ( x )+ a ( x ) uniformly for all n and q ≥ n . If ϵ > 0 is fixed, n → ∞ and 4 q > (1 + ϵ) n log n , this formula simplifies to c ( n, q ) ˜ ( N q ) exp(– ne −2 q/n ). on the other hand, if k = o ( n 1/2 ), this formula simplifies to c ( n, n + k ) ˜ 1/2 w k (3/π) 1/2 ( e /12 k ) k /2 n n − (3 k −1)/2 .