z-logo
Premium
Geometry of large Boltzmann outerplanar maps
Author(s) -
Stefánsson Sigurdur Örn,
Stufler Benedikt
Publication year - 2019
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20834
Subject(s) - mathematics , hausdorff space , infinity , boundary (topology) , boltzmann constant , sequence (biology) , geometry , combinatorics , mathematical analysis , physics , genetics , biology , thermodynamics
We study the phase diagram of random outerplanar maps sampled according to nonnegative Boltzmann weights that are assigned to each face of a map. We prove that for certain choices of weights the map looks like a rescaled version of its boundary when its number of vertices tends to infinity. The Boltzmann outerplanar maps are then shown to converge in the Gromov‐Hausdorff sense towards the α ‐stable looptree introduced by Curien and Kortchemski (2014), with the parameter α depending on the specific weight‐sequence. This allows us to describe the transition of the asymptotic geometric shape from a deterministic circle to the Brownian tree.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom