z-logo
Premium
Hypergraph coloring up to condensation
Author(s) -
Ayre Peter,
CojaOghlan Amin,
Greenhill Catherine
Publication year - 2019
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20824
Subject(s) - hypergraph , combinatorics , condensation , frieze , mathematics , series (stratigraphy) , upper and lower bounds , phase transition , discrete mathematics , physics , quantum mechanics , mathematical analysis , thermodynamics , art history , paleontology , biology , art
Improving a result of Dyer, Frieze and Greenhill [Journal of Combinatorial Theory, Series B, 2015], we determine the q ‐colorability threshold in random k ‐uniform hypergraphs up to an additive error of ln 2 + ε q , where lim q → ∞ε q = 0 . The new lower bound on the threshold matches the “condensation phase transition” predicted by statistical physics considerations [Krzakala et al., PNAS 2007].

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom