Premium
Deterministic random walks on finite graphs
Author(s) -
Kijima Shuji,
Koga Kentaro,
Makino Kazuhisa
Publication year - 2015
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20533
Subject(s) - vertex (graph theory) , combinatorics , hypercube , random walk , router , bounded function , upper and lower bounds , discrete mathematics , mathematics , random graph , graph , computer science , statistics , computer network , mathematical analysis
The rotor‐router model, also known as the Propp machine, is a deterministic process analogous to a random walk on a graph. Instead of distributing tokens to randomly chosen neighbors, the Propp machine deterministically serves the neighbors in a fixed order by associating to each vertex a “rotor‐router” pointing to one of its neighbors. This paper investigates the discrepancy at a single vertex between the number of tokens in the rotor‐router model and the expected number of tokens in a random walk, for finite graphs in general. We show that the discrepancy is bounded by O (mn) at any time for any initial configuration if the corresponding random walk is lazy and reversible, where n and m denote the numbers of nodes and edges, respectively. For a lower bound, we show examples of graphs and initial configurations for which the discrepancy at a single vertex is Ω(m) at any time (> 0). For some special graphs, namely hypercube skeletons and Johnson graphs, we give a polylogarithmic upper bound, in terms of the number of nodes, for the discrepancy. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 46,739–761, 2015
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom