Premium
A tail bound for read‐ k families of functions
Author(s) -
Gavinsky Dmitry,
Lovett Shachar,
Saks Michael,
Srinivasan Srikanth
Publication year - 2015
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20532
Subject(s) - struct , random variable , modulo , chernoff bound , mathematics , sum of normally distributed random variables , combinatorics , variables , upper and lower bounds , discrete mathematics , statistics , convergence of random variables , computer science , mathematical analysis , programming language
We prove a Chernoff‐like large deviation bound on the sum of non‐independent random variables that have the following dependence structure. The variablesY 1 , … , Y rare arbitrary [0,1]‐valued functions of independent random variablesX 1 , … , X m , modulo a restriction that every X i influences at most k of the variablesY 1 , … , Y r . © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 99–108, 2015
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom