Premium
The phase transition in random graphs: A simple proof
Author(s) -
Krivelevich Michael,
Sudakov Benny
Publication year - 2013
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20470
Subject(s) - combinatorics , random graph , graph , simple (philosophy) , physics , phase transition , mathematics , path (computing) , condensed matter physics , computer science , philosophy , epistemology , programming language
The classical result of Erdős and Rényi asserts that the random graph G ( n , p ) experiences sharp phase transition around \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1}{n}\end{align*} \end{document} – for any ε > 0 and \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1-\epsilon}{n}\end{align*} \end{document} , all connected components of G ( n , p ) are typically of size O ε (log n ), while for \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1+\epsilon}{n}\end{align*} \end{document} , with high probability there exists a connected component of size linear in n . We provide a very simple proof of this fundamental result; in fact, we prove that in the supercritical regime \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1+\epsilon}{n}\end{align*} \end{document} , the random graph G ( n , p ) contains typically a path of linear length. We also discuss applications of our technique to other random graph models and to positional games. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom