Premium
Tail bounds for the height and width of a random tree with a given degree sequence
Author(s) -
AddarioBerry L.
Publication year - 2012
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20438
Subject(s) - combinatorics , exponent , mathematics , tree (set theory) , sequence (biology) , degree (music) , order (exchange) , plane (geometry) , physics , geometry , chemistry , philosophy , biochemistry , linguistics , finance , acoustics , economics
Fix a sequence c = ( c 1 ,…, c n ) of non‐negative integers with sum n − 1. We say a rooted tree T has child sequence c if it is possible to order the nodes of T as v 1 ,…, v n so that for each 1 ≤ i ≤ n , v i has exactly c i children. Let \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}${\mathcal T}$\end{document} be a plane tree drawn uniformly at random from among all plane trees with child sequence c . In this note we prove sub‐Gaussian tail bounds on the height (greatest depth of any node) and width (greatest number of nodes at any single depth) of \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}${\mathcal T}$\end{document} . These bounds are optimal up to the constant in the exponent when c satisfies \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}$\sum_{i=1}^n c_i^2=O(n)$\end{document} ; the latter can be viewed as a “finite variance” condition for the child sequence. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom