Premium
Longest cycles in sparse random digraphs
Author(s) -
Krivelevich Michael,
Lubetzky Eyal,
Sudakov Benny
Publication year - 2013
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20435
Subject(s) - combinatorics , digraph , mathematics , random graph , degree (music) , graph , physics , acoustics
Long paths and cycles in sparse random graphs and digraphs were studied intensively in the 1980's. It was finally shown by Frieze in 1986 that the random graph \documentclass{article}\usepackage{mathrsfs, amsmath, amssymb}\pagestyle{empty}\begin{document}${\mathcal{G}}(n,p)$\end{document} with p = c / n has a cycle on at all but at most (1 + ε) ce − c n vertices with high probability, where ε = ε ( c ) → 0 as c → ∞. This estimate on the number of uncovered vertices is essentially tight due to vertices of degree 1. However, for the random digraph \documentclass{article}\usepackage{mathrsfs, amsmath, amssymb}\pagestyle{empty}\begin{document}${\mathcal{D}}(n,p)$\end{document} no tight result was known and the best estimate was a factor of c /2 away from the corresponding lower bound. In this work we close this gap and show that the random digraph \documentclass{article}\usepackage{mathrsfs, amsmath, amssymb}\pagestyle{empty}\begin{document}${\mathcal{D}}(n,p)$\end{document} with p = c / n has a cycle containing all but (2 + ε) e − c n vertices w.h.p., where ε = ε ( c ) → 0 as c → ∞. This is essentially tight since w.h.p. such a random digraph contains (2 e − c − o (1)) n vertices with zero in‐degree or out‐degree. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom