Premium
Distribution of the number of spanning regular subgraphs in random graphs
Author(s) -
Gao Pu
Publication year - 2013
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20418
Subject(s) - combinatorics , limiting , mathematics , distribution (mathematics) , range (aeronautics) , random graph , physics , mathematical analysis , graph , materials science , mechanical engineering , engineering , composite material
In this paper, we examine the moments of the number of d ‐factors in \documentclass{article}\usepackage{mathrsfs, amsmath, amssymb}\pagestyle{empty}\begin{document}\begin{align*}\mathcal{ G}(n,p)\end{align*} \end{document} for all p and d satisfying d 3 = o ( p 2 n ). We also determine the limiting distribution of the number of d ‐factors inside this range with further restriction that \documentclass{article}\usepackage{mathrsfs, amsmath, amssymb}\pagestyle{empty}\begin{document}\begin{align*}(1-p)\sqrt{dn}\to\infty\end{align*} \end{document} as n → ∞ .© 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom