z-logo
Premium
Large deviation analysis for layered percolation problems on the complete graph
Author(s) -
Chayes Lincoln,
Smith S. Alex
Publication year - 2012
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20387
Subject(s) - giant component , random graph , mathematics , exponential function , combinatorics , graph , rate function , discrete mathematics , large deviations theory , statistics , mathematical analysis
We analyze the large deviation properties for the (multitype) version of percolation on the complete graph – the simplest substitutive generalization of the Erd&0151;s‐Rènyi random graph that was treated in article by Bollobás et al. (Random Structures Algorithms 31 (2007), 3–122). Here the vertices of the graph are divided into a fixed finite number of sets (called layers ) the probability of { u , v } being in our edge set depends on the respective layers of u and v . We determine the exponential rate function for the probability that a giant component occupies a fixed fraction of the graph, while all other components are small. We also determine the exponential rate function for the probability that a particular exploration process on the random graph will discover a certain fraction of vertices in each layer, without encountering a giant component.© 2011 Wiley Periodicals, Inc. Random Struct. Alg., 40, 460–492, 2012

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom