z-logo
Premium
On series of signed vectors and their rearrangements
Author(s) -
Banaszczyk Wojciech
Publication year - 2012
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20373
Subject(s) - permutation (music) , series (stratigraphy) , mathematics , combinatorics , struct , constant (computer programming) , sequence (biology) , random permutation , random sequence , discrete mathematics , physics , mathematical analysis , computer science , symmetric group , chemistry , biology , paleontology , biochemistry , distribution (mathematics) , acoustics , programming language
Let x 1 ,…, x m ∈ \input amssym $ \Bbb R$ n be a sequence of vectors with ∥ x i ∥ 2 ≤ 1 for all i . It is proved that there are signs ε 1 ,…,ε m = ±1 such that\documentclass{article} \usepackage{mathrsfs,amsmath, amssymb} \pagestyle{empty} \begin{document}\begin{align*} \|{\varepsilon}_1x_1+\cdots+{\varepsilon}_kx_k\|_2\le C_1\sqrt{n}+C_2\sqrt{\mathstrut\log m}, \qquad k=1,\ldots,m, \end{align*} \end{document} where C 1 , C 2 are some numerical constants. It is also proved that there are signs ε   1 ′ ,…,ε  m ′= ±1 and a permutation π of {1,…, m } such that\documentclass{article} \usepackage{mathrsfs,amsmath, amssymb} \pagestyle{empty} \begin{document}\begin{align*} \big\|{\varepsilon}_1^\prime x_{\pi(1)}+\cdots+{\varepsilon}_k^{\prime}x_{\pi(k)}\big\|_2\le C^{\prime}\sqrt n,\qquad k=1,\ldots,m, \end{align*} \end{document} where C ′ is some other numerical constant. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom