Premium
The size‐Ramsey number of trees
Author(s) -
Dellamonica Domingos
Publication year - 2012
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20363
Subject(s) - ramsey's theorem , combinatorics , mathematics , conjecture , monochromatic color , discrete mathematics , embedding , graph , invariant (physics) , random graph , ramsey theory , computer science , physics , artificial intelligence , optics , mathematical physics
Abstract Given a graph G , the size‐Ramsey number $\hat r(G)$ is the minimum number m for which there exists a graph F on m edges such that any two‐coloring of the edges of F admits a monochromatic copy of G . In 1983, J. Beck introduced an invariant β(·) for trees and showed that $\hat r(T) = \Omega (\beta (T))$ . Moreover he conjectured that $\hat r(T) = \Theta (\beta (T))$ . We settle this conjecture by providing a family of graphs and an embedding scheme for trees. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011