Premium
Anatomy of a young giant component in the random graph
Author(s) -
Ding Jian,
Kim Jeong Han,
Lubetzky Eyal,
Peres Yuval
Publication year - 2011
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20342
Subject(s) - combinatorics , physics , graph , path (computing) , random graph , giant component , mathematics , computer science , programming language
Abstract We provide a complete description of the giant component of the Erdős‐Rényi random graph \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}{\mathcal{G}}(n,p)\end{align*} \end{document} as soon as it emerges from the scaling window, i.e., for p = (1+ε)/ n where ε 3 n → ∞ and ε = o (1). Our description is particularly simple for ε = o ( n ‐1/4 ), where the giant component \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}{\mathcal{C}_1}\end{align*} \end{document} is contiguous with the following model (i.e., every graph property that holds with high probability for this model also holds w.h.p. for \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}{\mathcal{C}_1}\end{align*} \end{document} ). Let Z be normal with mean \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}\frac{2}{3} \varepsilon^3 n\end{align*} \end{document} and variance ε 3 n , and let \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}\mathcal{K}\end{align*} \end{document} be a random 3‐regular graph on \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}2\left\lfloor Z\right\rfloor\end{align*} \end{document} vertices. Replace each edge of \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}\mathcal{K}\end{align*} \end{document} by a path, where the path lengths are i.i.d. geometric with mean 1/ε. Finally, attach an independent Poisson( 1‐ε )‐Galton‐Watson tree to each vertex. A similar picture is obtained for larger ε = o (1), in which case the random 3‐regular graph is replaced by a random graph with N k vertices of degree k for k ≥ 3, where N k has mean and variance of order ε k n . This description enables us to determine fundamental characteristics of the supercritical random graph. Namely, we can infer the asymptotics of the diameter of the giant component for any rate of decay of ε, as well as the mixing time of the random walk on \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}{\mathcal{C}_1}\end{align*} \end{document} . © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 39, 139–178, 2011