z-logo
Premium
Eigenvectors of random graphs: Nodal Domains
Author(s) -
Dekel Yael,
Lee James R.,
Linial Nathan
Publication year - 2011
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20330
Subject(s) - eigenfunction , eigenvalues and eigenvectors , nodal , mathematics , combinatorics , graph , discrete mathematics , physics , quantum mechanics , anatomy , medicine
Abstract We initiate a systematic study of eigenvectors of random graphs. Whereas much is known about eigenvalues of graphs and how they reflect properties of the underlying graph, relatively little is known about the corresponding eigenvectors. Our main focus in this article is on the nodal domains associated with the different eigenfunctions. In the analogous realm of Laplacians of Riemannian manifolds, nodal domains have been the subject of intensive research for well over a hundred years. Graphical nodal domains turn out to have interesting and unexpected properties. Our main theorem asserts that there is a constant c such that for almost every graph G , each eigenfunction of G has at most two large nodal domains, and in addition at most c exceptional vertices outside these primary domains. We also discuss variations of these questions and briefly report on some numerical experiments which, in particular, suggest that almost surely there are just two nodal domains and no exceptional vertices. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 39, 39–58, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here