z-logo
Premium
First‐passage percolation on a ladder graph, and the path cost in a VCG auction
Author(s) -
Flaxman Abraham,
Gamarnik David,
Sorkin Gregory B.
Publication year - 2011
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20328
Subject(s) - bernoulli's principle , bernoulli distribution , mathematics , random variable , random graph , shortest path problem , bounded function , constant (computer programming) , path (computing) , function (biology) , graph , mathematical optimization , combinatorics , computer science , mathematical analysis , physics , statistics , evolutionary biology , biology , thermodynamics , programming language
This paper studies the time constant for first‐passage percolation, and the Vickrey‐Clarke‐Groves (VCG) payment, for the shortest path on a ladder graph (a width‐2 strip) with random edge costs, treating both in a unified way based on recursive distributional equations. For first‐passage percolation where the edge costs are independent Bernoulli random variables we find the time constant exactly; it is a rational function of the Bernoulli parameter. For first‐passage percolation where the edge costs are uniform random variables we present a reasonably efficient means for obtaining arbitrarily close upper and lower bounds. Using properties of Harris chains we also show that the incremental cost to advance through the medium has a unique stationary distribution, and we compute stochastic lower and upper bounds. We rely on no special properties of the uniform distribution: the same methods could be applied to any well‐behaved, bounded cost distribution. For the VCG payment, with Bernoulli‐distributed costs the payment for an n ‐long ladder, divided by n , tends to an explicit rational function of the Bernoulli parameter. Again, our methods apply more generally. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 38, 350‐364, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom