z-logo
Premium
On random sampling in uniform hypergraphs
Author(s) -
Czygrinow Andrzej,
Nagle Brendan
Publication year - 2011
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20326
Subject(s) - mathematics , sampling (signal processing) , computer science , statistics , combinatorics , telecommunications , detector
A k ‐graph \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}$ \end{document} on vertex set [ n ] = {1,…, n } is said to be (ρ,ζ)‐uniform if every S ⊆ [ n ] of size s = | S | > ζ n spans (ρ ± ζ) \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $\binom{s}{k}$ \end{document} edges. A ‘grabbing lemma’ of Mubayi and Rödl shows that this property is typically inherited locally: if \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}$ \end{document} is (ρ,ζ)‐uniform, then all but exp{− s 1/ k /20} \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $\binom{n}{s}$ \end{document} sets \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $ S \in \binom{[n]}{s}$ \end{document} span (ρ,ζ′)‐uniform subhypergraphs \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}\lbrack S\rbrack$ \end{document} , where ζ′→ 0 as ζ → 0, s ≥ s 0 (ζ′) and n is sufficiently large. In this article, we establish a grabbing lemma for a different concept of hypergraph uniformity, and infer the result above as a corollary. In particular, we improve, in the context above, the error exp{− s 1/ k /20} to exp{− cs }, for a constant c = c ( k ,ζ′) > 0. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 38, 422–440, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom