z-logo
Premium
Piercing random boxes
Author(s) -
Tran Linh V.
Publication year - 2011
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20321
Subject(s) - combinatorics , struct , hypercube , mathematics , omega , infinity , unit (ring theory) , binary logarithm , discrete mathematics , physics , computer science , mathematical analysis , mathematics education , quantum mechanics , programming language
Consider a set of n random axis parallel boxes in the unit hypercube in ${\bf R}^{d}$ , where d is fixed and n tends to infinity. We show that the minimum number of points one needs to pierce all these boxes is, with high probability, at least $\Omega_d(\sqrt{n}(\log n)^{d/2-1})$ and at most $O_d(\sqrt{n}(\log n)^{d/2-1}\log \log n)$ . © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 38, 365–380, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom