z-logo
Premium
Homological connectivity of random k ‐dimensional complexes
Author(s) -
Meshulam R.,
Wallach N.
Publication year - 2009
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20238
Subject(s) - simplex , struct , mathematics , abelian group , combinatorics , homology (biology) , discrete mathematics , chemistry , computer science , amino acid , programming language , biochemistry
Let Δ n −1 denote the ( n − 1)‐dimensional simplex. Let Y be a random k ‐dimensional subcomplex of Δ n −1 obtained by starting with the full ( k − 1)‐dimensional skeleton of Δ n −1 and then adding each k ‐simplex independently with probability p . Let H k −1 ( Y ; R ) denote the ( k − 1)‐dimensional reduced homology group of Y with coefficients in a finite abelian group R . It is shown that for any fixed R and k ≥ 1 and for any function ω( n ) that tends to infinity$${\mathop{\rm lim}\limits_{n \rightarrow \infty}}{\Pr}[H_{k-1} \; (Y;R)= 0]=\left\{ \eqalign {&{0 \quad p= {k\; {\rm log}\;n-\omega(n) \over n }} \cr & 1 \quad p={k\; {\rm log}\; n + \omega (n) \over n}. } \right. $$ © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom