z-logo
Premium
Sampling subproblems of heterogeneous Max‐Cut problems and approximation algorithms
Author(s) -
Drineas Petros,
Kannan Ravi,
Mahoney Michael W.
Publication year - 2008
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20196
Subject(s) - sampling (signal processing) , mathematical optimization , mathematics , algorithm , matrix (chemical analysis) , approximation algorithm , randomized algorithm , linear programming , computer science , materials science , filter (signal processing) , composite material , computer vision
Recent work in the analysis of randomized approximation algorithms for NP ‐hard optimization problems has involved approximating the solution to a problem by the solution of a related subproblem of constant size, where the subproblem is constructed by sampling elements of the original problem uniformly at random. In light of interest in problems with a heterogeneous structure, for which uniform sampling might be expected to yield suboptimal results, we investigate the use of nonuniform sampling probabilities. We develop and analyze an algorithm which uses a novel sampling method to obtain improved bounds for approximating the Max‐Cut of a graph. In particular, we show that by judicious choice of sampling probabilities one can obtain error bounds that are superior to the ones obtained by uniform sampling, both for unweighted and weighted versions of Max‐Cut. Of at least as much interest as the results we derive are the techniques we use. The first technique is a method to compute a compressed approximate decomposition of a matrix as the product of three smaller matrices, each of which has several appealing properties. The second technique is a method to approximate the feasibility or infeasibility of a large linear program by checking the feasibility or infeasibility of a nonuniformly randomly chosen subprogram of the original linear program. We expect that these and related techniques will prove fruitful for the future development of randomized approximation algorithms for problems whose input instances contain heterogeneities. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here