z-logo
Premium
The satisfiability threshold for randomly generated binary constraint satisfaction problems
Author(s) -
Frieze Alan,
Molloy Michael
Publication year - 2006
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.20118
Subject(s) - constraint satisfaction problem , satisfiability , homomorphism , constraint (computer aided design) , constraint satisfaction , discrete mathematics , binary number , mathematics , random graph , computer science , combinatorics , statistics , arithmetic , graph , probabilistic logic , geometry
We study two natural models of randomly generated constraint satisfaction problems. We determine how quickly the domain size must grow with n to ensure that these models are robust in the sense that they exhibit a non‐trivial threshold of satisfiability, and we determine the asymptotic order of that threshold. We also provide resolution complexity lower bounds for these models. One of our results immediately yields a theorem regarding homomorphisms between two random graphs. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom