Premium
Inexpensive d ‐dimensional matchings
Author(s) -
Huang BaeShi,
Perković Ljubomir,
Schmutz Eric
Publication year - 2002
Publication title -
random structures and algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.314
H-Index - 69
eISSN - 1098-2418
pISSN - 1042-9832
DOI - 10.1002/rsa.10027
Subject(s) - combinatorics , graph , matching (statistics) , mathematics , physics , statistics
Suppose that independent U (0, 1) weights are assigned to the \documentclass{article}\pagestyle{empty}\begin{document}${d\choose 2}n^{2}$\end{document} edges of the complete d ‐partite graph with n vertices in each of the d maximal independent sets. Then the expected weight of the minimum‐weight perfect d ‐dimensional matching is at least \documentclass{article}\pagestyle{empty}\begin{document}$\frac{3}{16}n^{1-(2/d)}$\end{document} . We describe a randomized algorithm that finds a perfect d ‐dimensional matching whose expected weight is at most 5 d 3 n 1−(2/ d ) + d 15 for all d ≥3 and n ≥1. © 2002 John Wiley & Sons, Inc. Random Struct. Alg., 20, 50–58, 2002
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom