Premium
Point source effects on density, biomass and diversity of benthic macroinvertebrates in a Mediterranean stream
Author(s) -
Ortiz J. D.,
Puig M. A.
Publication year - 2007
Publication title -
river research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.679
H-Index - 94
eISSN - 1535-1467
pISSN - 1535-1459
DOI - 10.1002/rra.971
Subject(s) - benthic zone , species richness , environmental science , upstream and downstream (dna) , biomass (ecology) , invertebrate , ordination , ecology , community structure , mediterranean climate , hydrology (agriculture) , streams , upstream (networking) , biology , geology , computer network , geotechnical engineering , computer science
We sampled benthic macroinvertebrates above and below a point source effluent in La Tordera stream (NE, Spain) over 2001–2002 to assess the effects of nutrient enrichment on the structure, and taxonomic composition of the benthic macroinvertebrate community. Below the point source, discharge, specific conductance and nutrient concentrations were higher than at the upstream reach, while dissolved oxygen (DO) decreased. Macroinvertebrate density was higher at the downstream reach than at the upstream reach on most dates but the two reaches did not differ in macroinvertebrate biomass. On average, taxa richness at the upstream reach was 20% higher than at the downstream reach. Several taxa, especially mayflies, stoneflies and caddisflies, were present only at the upstream reach. Shannon diversity was similar between the two reaches on 50% of the dates. Ordination analysis clearly separated the samples of the upstream reach from the samples of the downstream reach in the first axis and corroborated the effect of the point source on the benthic community. The two reaches followed a similar temporal pattern with respect to the distribution of taxa along the second axis of the ordination analysis. Higher similarities between the two reaches in taxa composition, densities and biomass after the spates of April and May 2002, suggest that flooding events may act as a reset mechanism for benthic communities and play an important role in stream restoration. Copyright © 2007 John Wiley & Sons, Ltd.