Premium
Effects of flooding regime upon the decomposition of Eichhornia azurea (Sw.) Kunth measured on a tropical, flow‐regulated floodplain (Paraná River, Brazil)
Author(s) -
Padial André Andrian,
Thomaz Sidinei Magela
Publication year - 2006
Publication title -
river research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.679
H-Index - 94
eISSN - 1535-1467
pISSN - 1535-1459
DOI - 10.1002/rra.936
Subject(s) - floodplain , macrophyte , detritus , environmental science , nutrient , flooding (psychology) , hydrology (agriculture) , nutrient cycle , ecosystem , phosphorus , biomass (ecology) , ecology , chemistry , biology , geology , psychology , geotechnical engineering , organic chemistry , psychotherapist
Abstract Decomposition of macrophytes is an important process in river‐floodplain systems, especially in the Upper Paraná River floodplain, given that this ecosystem receives high inputs of detritus from this vegetation. Release of nutrients by decomposition is essential in this floodplain because it is located downstream from a reservoir chain where nutrients are being trapped. Water level fluctuations are considered one of the most important aspects that affect macrophyte decomposition. Anthropogenic alterations, such as the control of flooding regimes, observed in this floodplain, could change the dynamic of this process. To evaluate the influence of the hydrological cycle upon the decomposition of Eichhornia azurea (an aquatic macrophyte that has high biomass values in this ecosystem), litter bags with senescent leaves and petioles of this plant were submitted to four different flooding treatments, which differed in time of flooding and exposure to dry conditions. The decomposition rates and the detritus chemical composition (nitrogen and phosphorus concentrations) were measured over 113 days. There were significant effects of the flooding treatments and time upon all parameters. The materials that decomposed with flood conditions showed the greatest decomposition rates. The quality of the detritus seems to be highly linked with the flooding regime, showing highest releases of phosphorus in the submerged treatments. It was shown that floods, even the short duration ones, increase the decomposition velocity and the nutrient cycling relative to dry conditions. Thus, investigations that assess the nutrient budgets on the Upper Paraná River floodplain and the role of nutrients in its productivity should consider the detritus compartment and the effects of flood regimes upon its dynamics. Copyright © 2006 John Wiley & Sons, Ltd.