z-logo
Premium
A geomorphic monitoring and adaptive assessment framework to assess the effect of lowland floodplain river restoration on channel–floodplain sediment continuity
Author(s) -
Florsheim J. L.,
Mount J. F.,
Constantine C. R.
Publication year - 2006
Publication title -
river research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.679
H-Index - 94
eISSN - 1535-1467
pISSN - 1535-1459
DOI - 10.1002/rra.911
Subject(s) - floodplain , channel (broadcasting) , hydrology (agriculture) , sediment , environmental science , habitat , stream restoration , river morphology , river ecosystem , deposition (geology) , dam removal , geology , ecology , geomorphology , computer science , computer network , geotechnical engineering , biology
Abstract The state of the science of lowland river floodplain restoration reflects the relatively new and experimental nature of large river floodplain rehabilitation efforts. Based on results of a case study of floodplain restoration at the lowland Cosumnes River, California, we present a geomorphic monitoring and adaptive assessment framework that addresses the need to inform and utilize scientific knowledge in lowland floodplain river restoration activities. Highlighting hydrogeomorphic processes that lead to habitat creation, we identify a discharge threshold for connectivity and sediment transfer from the channel to the floodplain and integrate discharge magnitude and duration to quantify a threshold to aid determination of when geomorphic monitoring is warranted. Using floodplain sand deposition volume in splay complexes as one indicator of dynamic floodplain habitat, we develop a model to aid prediction of the sand deposition volume as an assessment tool to use to analyze future monitoring data. Because geomorphic processes that form the physical structure of a habitat are dynamic, and because the most successful restoration projects accommodate this fundamental characteristic of ecosystems, monitoring designs must both identify trends and be adapted iteratively so that relevant features continue to be measured. Thus, in this paper, adaptive assessment is defined as the modification of monitoring and analysis methods as a dynamic system evolves following restoration activities. The adaptive monitoring and assessment methods proposed facilitate long‐term measurements of channel–floodplain sediment transfer, and changes in sediment storage and morphology unique to lowland river–floodplain interactions and the habitat that these physical processes support. The adaptive assessment framework should be integrated with biological and chemical elements of an interdisciplinary ecosystem monitoring program to answer research hypotheses and to advance restoration science in lowland floodplain river systems. Copyright © 2005 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here