z-logo
Premium
Reconstruction of the characteristics of a natural alluvial river–floodplain system and hydromorphological changes following human modifications: the Danube River (1812–1991)
Author(s) -
Hohensinner S.,
Habersack H.,
Jungwirth M.,
Zauner G.
Publication year - 2004
Publication title -
river research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.679
H-Index - 94
eISSN - 1535-1467
pISSN - 1535-1459
DOI - 10.1002/rra.719
Subject(s) - floodplain , alluvium , hydrology (agriculture) , natural (archaeology) , environmental science , alluvial plain , geology , geography , geomorphology , geotechnical engineering , cartography , paleontology
Based on detailed historical surveys from 1812, the natural riverine landscape of a 10.25‐km‐long reach of the Danube River in the Austrian Machland region prior to channelization is analysed. Anthropogenically induced changes of fluvial dynamics, hydrological connectivity and aquatic habitat composition are discussed, comparing the situations following channelization (1925) and flow regulation (1991). In 1812 the alluvial river–floodplain system of the Danube River comprised a highly complex channel network, numerous gravel bars and extensive islands, with the main channel and side arms (eupotamon) representing about 97% of the entire water surface at low flow. The floodplain was characterized by relatively flat terrain and numerous natural trenches (former active channels) connected to the main channel. These hydromorphological conditions led to marked expansion/contraction of the water surface area at water level fluctuations below bankfull (‘flow pulse’). The high degree of hydrological connectivity enabled intensive exchange processes and favoured migrations of aquatic organisms between the river and floodplain habitats over a period of approximately 90 days per year. Overall in 1812, 57% of the active zone (active channels and floodplain) was inundated at bankfull water level. Channelization and construction of hydropower plants resulted in a truncated fluvial system. Consequently, eupotamal water bodies decreased by 65%, and gravel/sand bars and vegetated islands decreased by 94% and 97%, respectively, whereas the area of the various backwaters doubled. In 1991 the former ‘flow pulse’ was halved due to artificial levees and embankments, greatly diminishing hydrological connectivity and decoupling large areas of the floodplain from the main channel. Active overflow, formerly playing an important role, is now replaced by backwater flooding and seepage inflow in isolated water bodies. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here