z-logo
Premium
Ecohydraulic modelling of anabranching rivers
Author(s) -
Entwistle Neil,
Heritage George,
Milan David
Publication year - 2019
Publication title -
river research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.679
H-Index - 94
eISSN - 1535-1467
pISSN - 1535-1459
DOI - 10.1002/rra.3413
Subject(s) - biotope , froude number , habitat , flood myth , environmental science , hydrology (agriculture) , floodplain , ecology , hydraulics , geology , flow (mathematics) , geography , geotechnical engineering , biology , engineering , geometry , mathematics , archaeology , aerospace engineering
Abstract In this paper we provide the first quantitative evidence of the spatial complexity of habitat diversity across the flow regime for locally anabranching channels and their potential increased biodiversity value in comparison to managed single‐thread rivers. Ecohydraulic modelling is used to provide evidence for the potential ecological value of anabranching channels. Hydraulic habitat (biotopes) of an anabranched reach of the River Wear at Wolsingham, UK, is compared with an adjacent artificially straightened single‐thread reach downstream. Two‐dimensional hydraulic modelling was undertaken across the flow regime. Simulated depth and velocity data were used to calculate Froude number index, known to be closely associated with biotope type, allowing biotope maps to be produced for each flow simulation using published Froude number limits. The gross morphology of the anabranched reach appears to be controlling flow hydraulics, creating a complex and diverse biotope distribution at low and intermediate flows. This contrasts markedly with the near uniform biotope pattern modelled for the heavily modified single‐thread reach. As discharge increases the pattern of biotopes altered to reflect a generally higher energy system, interestingly however, a number of low energy biotopes were activated through the anabranched reach as new subchannels became inundated and this process creates valuable refugia for macroinvertebrates and fish, during times of flood. In contrast, these low energy areas were not seen in the straightened single‐thread reach. Model results suggest that anabranched channels have a vital role to play in regulating flood energy on river systems and in creating and maintaining hydraulic habitat diversity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here