z-logo
Premium
Flood Effects Provide Evidence of an Alternate Stable State from Dam Management on the Upper Missouri River
Author(s) -
Skalak K.,
Benthem A.,
Hupp C.,
Schenk E.,
Galloway J.,
Nustad R.
Publication year - 2017
Publication title -
river research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.679
H-Index - 94
eISSN - 1535-1467
pISSN - 1535-1459
DOI - 10.1002/rra.3084
Subject(s) - flood myth , thalweg , hydrology (agriculture) , channel (broadcasting) , flooding (psychology) , floodplain , flood control , geology , environmental science , geography , geomorphology , sediment , archaeology , geotechnical engineering , cartography , psychology , engineering , electrical engineering , psychotherapist
Abstract We examine how historic flooding in 2011 affected the geomorphic adjustments created by dam regulation along the approximately 120 km free flowing reach of the Upper Missouri River bounded upstream by the Garrison Dam (1953) and downstream by Lake Oahe Reservoir (1959) near the City of Bismarck, ND, USA. The largest flood since dam regulation occurred in 2011. Flood releases from the Garrison Dam began in May 2011 and lasted until October, peaking with a flow of more than 4200 m 3  s −1 . Channel cross‐section data and aerial imagery before and after the flood were compared with historic rates of channel change to assess the relative impact of the flood on the river morphology. Results indicate that the 2011 flood maintained trends in island area with the loss of islands in the reach just below the dam and an increase in island area downstream. Channel capacity changes varied along the Garrison Segment as a result of the flood. The thalweg, which has been stable since the mid‐1970s, did not migrate. And channel morphology, as defined by a newly developed shoaling metric, which quantifies the degree of channel braiding, indicates significant longitudinal variability in response to the flood. These results show that the 2011 flood exacerbates some geomorphic trends caused by the dam while reversing others. We conclude that the presence of dams has created an alternate geomorphic and related ecological stable state, which does not revert towards pre‐dam conditions in response to the flood of record. This suggests that management of sediment transport dynamics as well as flow modification is necessary to restore the Garrison Segment of the Upper Missouri River towards pre‐dam conditions and help create or maintain habitat for endangered species. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here