z-logo
Premium
Evaluation of the Logarithmic Law of the Wall for River Flows
Author(s) -
Petrie J.,
Diplas P.
Publication year - 2016
Publication title -
river research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.679
H-Index - 94
eISSN - 1535-1467
pISSN - 1535-1459
DOI - 10.1002/rra.2920
Subject(s) - shear stress , logarithm , shear velocity , hydraulic roughness , acoustic doppler current profiler , geology , surface finish , doppler effect , flow velocity , flow (mathematics) , linear regression , hydrology (agriculture) , mechanics , geotechnical engineering , geometry , mathematics , current (fluid) , statistics , materials science , mathematical analysis , physics , turbulence , oceanography , astronomy , composite material
The logarithmic law of the wall is commonly used to determine the shear stress applied to the river bed by the flow field. The shear stress calculation requires a velocity profile at the location of interest—data that can be obtained with a boat‐mounted acoustic Doppler current profiler (ADCP). ADCP survey procedures use either a fixed‐vessel (FV) or moving‐vessel (MV) with each providing different spatial and temporal resolution. MV procedures require significantly less field effort but the data lack the temporal resolution of FV measurements. This fact has motivated investigators to seek MV procedures and analysis techniques that provide equivalent results to FV measurements. This study compares results of the two survey procedures for depth‐averaged quantities (velocity and flow direction), mean velocity profiles, shear velocity and equivalent sand grain roughness. Mean velocity profiles are produced by time averaging for the FV measurements and spatial averaging for the MV measurements. Shear velocity and equivalent sand grain roughness are determined using simple linear regression applied to the logarithmic law of the wall. These procedures are demonstrated using data obtained during bankfull flow on the lower Roanoke River, North Carolina, USA. The results indicate comparable estimates of depth‐averaged quantities from both survey procedures. Estimates of the mean velocity profiles were found to be more variable. The agreement for shear velocity and equivalent sand grain roughness was generally poor indicating that further work is necessary to produce comparable results with MV survey procedures. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here