z-logo
Premium
Characterizing Sub‐Daily Flow Regimes: Implications of Hydrologic Resolution on Ecohydrology Studies
Author(s) -
Bevelhimer M. S.,
McManamay R. A.,
O'Connor B.
Publication year - 2015
Publication title -
river research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.679
H-Index - 94
eISSN - 1535-1467
pISSN - 1535-1459
DOI - 10.1002/rra.2781
Subject(s) - streams , environmental science , hydropower , streamflow , hydrology (agriculture) , ecohydrology , baseflow , univariate , statistics , multivariate statistics , ecosystem , ecology , computer science , geography , drainage basin , mathematics , geology , computer network , cartography , geotechnical engineering , biology
Natural variability in flow is a primary factor controlling geomorphic and ecological processes in riverine ecosystems. Within the hydropower industry, there is growing pressure from environmental groups and natural resource managers to change reservoir releases from daily peaking to run‐of‐river operations on the basis of the assumption that downstream biological communities will improve under a more natural flow regime. In this paper, we discuss the importance of assessing sub‐daily flows for understanding the physical and ecological dynamics within river systems. We present a variety of metrics for characterizing sub‐daily flow variation and use these metrics to evaluate general trends among streams affected by peaking hydroelectric projects, run‐of‐river projects and streams that are largely unaffected by flow altering activities. Univariate and multivariate techniques were used to assess similarity among different stream types on the basis of these sub‐daily metrics. For comparison, similar analyses were performed using analogous metrics calculated with mean daily flow values. Our results confirm that sub‐daily flow metrics reveal variation among and within streams that are not captured by daily flow statistics. Using sub‐daily flow statistics, we were able to quantify the degree of difference between unaltered and peaking streams and the amount of similarity between unaltered and run‐of‐river streams. The sub‐daily statistics were largely uncorrelated with daily statistics of similar scope. On short temporal scales, sub‐daily statistics reveal the relatively constant nature of unaltered stream reaches and the highly variable nature of  hydropower‐affected streams, whereas daily statistics show just the opposite over longer temporal scales. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here