Premium
Monitoring and assessment of a river restoration project in central New York
Author(s) -
Buchanan B. P.,
Walter M. T.,
Nagle G. N.,
Schneider R. L.
Publication year - 2012
Publication title -
river research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.679
H-Index - 94
eISSN - 1535-1467
pISSN - 1535-1459
DOI - 10.1002/rra.1453
Subject(s) - stream restoration , channel (broadcasting) , environmental science , hydrology (agriculture) , adaptive management , environmental resource management , floodplain , watershed , riparian zone , scale (ratio) , workflow , vegetation (pathology) , process (computing) , computer science , habitat , streams , geology , geography , ecology , medicine , computer network , geotechnical engineering , cartography , pathology , database , machine learning , biology , operating system
A widespread lack of post‐project appraisals (PPAs) not only hinders progress in the field of river restoration but also limits the application of adaptive management – a powerful heuristic tool particularly well suited to dynamic fluvial environments. In an effort to contribute to the limited body of scientific literature pertaining to PPAs, we evaluated a stream restoration project completed in the fall of 2005 in central New York. Using a variety of evaluation approaches, we documented both successes (e.g. enhanced in‐stream habitat) and short‐comings (e.g. channel avulsions). Overall, we concluded that the project was marginally successful in achieving its stated goals and that future prospects remain uncertain based on current trajectory. Lessons learned from this monitoring study include: (i) protect vulnerable banks and floodplains until vegetation is established, e.g. via integrated bio‐ and geo‐technical methods, (ii) perform scour depth analyses and excavate scour pools associated with hydraulic structures to design depth to prevent clogging of the channel during post‐construction floods, (iii) orient bank vanes such that cross‐stream flows are not deflected towards the bank, (iv) cross‐validate restoration designs via multiple methods, including process‐based sediment transport relations, especially in unstable gravel‐bed rivers, (v) anticipate and fund for fixing natural channel design (NCD) projects for 3–5 years after completion to account for uncertainties and (vi) identify measurable, goal‐specific success criteria that account for watershed scale stressors and site constraints prior to construction to facilitate successful project design and ensure effective outcomes appraisal. Copyright © 2010 John Wiley & Sons, Ltd.