Premium
Reintroducing wood to streams in agricultural landscapes: changes in velocity profile, stage and erosion rates
Author(s) -
Lester Rebecca Elaine,
Wright Wendy
Publication year - 2009
Publication title -
river research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.679
H-Index - 94
eISSN - 1535-1467
pISSN - 1535-1459
DOI - 10.1002/rra.1158
Subject(s) - streams , erosion , flooding (psychology) , environmental science , channel (broadcasting) , hydrology (agriculture) , habitat , stream restoration , stage (stratigraphy) , ecology , geology , geotechnical engineering , geomorphology , biology , psychology , computer network , paleontology , engineering , computer science , electrical engineering , psychotherapist
Historically, perceived increases in erosion and flooding levels have been attributed to in‐stream wood and used to justify its removal from streams and rivers around the world. More recently, recognition of the adverse morphological and biological impacts caused by this removal has led to rehabilitation projects that actively reintroduce wood to streams. However, a perception remains amongst some members of the general community that wood additions increase the likelihood of flooding and erosion in the target streams. To test whether there was a basis for this perception, we experimentally added wood to eight streams across southwest Victoria and Gippsland, Australia. The velocity, stage and bed and bank erosion rates were compared with those of unaltered reaches. We detected localized changes in the velocity and stage parameters but that these were unlikely to operate at the reach‐scale. Bed erosion rates, where maximum erosion was assumed if pins were not recovered, showed increased erosion due to wood additions but this was not supported by channel shape analyses, which identified short‐term increases in the variability of the channel shape, followed by longer‐term stability at treatment sites. We found no clear evidence of increased longer‐term rates of erosion or flooding associated with the introduction of wood to streams over the 18‐month study period. It remains important to carefully design rehabilitation works, but the lack of adverse effects on stream morphology and increased variability of the in‐stream environment suggests improved habitat diversity, supporting the use of wood addition as a stream rehabilitation technique. Copyright © 2008 John Wiley & Sons, Ltd.