Premium
When the Dust Settles: The Four Behaviors of LiDAR in the Presence of Fine Airborne Particulates
Author(s) -
Phillips Tyson Govan,
Guenther Nicky,
McAree Peter Ross
Publication year - 2017
Publication title -
journal of field robotics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.152
H-Index - 96
eISSN - 1556-4967
pISSN - 1556-4959
DOI - 10.1002/rob.21701
Subject(s) - lidar , ranging , remote sensing , transmittance , environmental science , particulates , optics , computer science , physics , geography , chemistry , telecommunications , organic chemistry
This paper describes the behavior of a commercial light detection and ranging (LiDAR) sensor in the presence of dust. This work is motivated by the need to develop perception systems that must operate where dust is present. This paper shows that the behavior of measurements from the sensor is systematic and predictable. LiDAR sensors exhibit four behaviors that are articulated and understood from the perspective of the shape‐of‐return signals from emitted light pulses. We subject the commercial sensor to a series of tests that measure the return pulses and show that they are consistent with theoretical predictions of behavior. Several important conclusions emerge: (i) where LiDAR measures dust, it does so to the leading edge of a dust cloud rather than as a random noise; (ii) dust starts to affect measurements when the atmospheric transmittance is less than 71%–74%, but this is quite variable with conditions; (iii) LiDAR is capable of ranging to a target in dust clouds with transmittance as low as 2% if the target is retroreflective and 6% if it is of low reflectivity; (iv) the effects of airborne particulates such as dust are less evident in the far field. The significance of this paper lies in providing insight into how better to use measurements from off‐the‐shelf LiDAR sensors in solving perception problems.