Premium
Shared autonomy system for tracked vehicles on rough terrain based on continuous three‐dimensional terrain scanning
Author(s) -
Okada Yoshito,
Nagatani Keiji,
Yoshida Kazuya,
Tadokoro Satoshi,
Yoshida Tomoaki,
Koyanagi Eiji
Publication year - 2011
Publication title -
journal of field robotics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.152
H-Index - 96
eISSN - 1556-4967
pISSN - 1556-4959
DOI - 10.1002/rob.20416
Subject(s) - terrain , traverse , robot , teleoperation , computer science , controller (irrigation) , computer vision , artificial intelligence , simulation , lidar , real time computing , remote sensing , geography , cartography , geodesy , agronomy , biology
Tracked vehicles are frequently used as search‐and‐rescue robots for exploring disaster areas. To enhance their ability to traverse rough terrain, some of these robots are equipped with swingable subtracks. However, manual control of such subtracks also increases the operator's workload, particularly in teleoperation with limited camera views. To eliminate this trade‐off, we have developed a shared autonomy system using an autonomous controller for subtracks that is based on continuous three‐dimensional terrain scanning. Using this system, the operator has only to specify the direction of travel to the robot, following which the robot traverses rough terrain using autonomously generated subtrack motions. In our system, real‐time terrain slices near the robot are obtained using two or three LIDAR (laser imaging detection and ranging) sensors, and these terrain slices are integrated to generate three‐dimensional terrain information. In this paper, we introduce an autonomous controller for subtracks and validate the reliability of a shared autonomy system on actual rough terrains through experimental results. © 2011 Wiley Periodicals, Inc.