z-logo
Premium
Terrain‐based vehicle orientation estimation combining vision and inertial measurements
Author(s) -
Gupta Vishisht,
Brennan Sean
Publication year - 2008
Publication title -
journal of field robotics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.152
H-Index - 96
eISSN - 1556-4967
pISSN - 1556-4959
DOI - 10.1002/rob.20233
Subject(s) - inertial measurement unit , computer vision , terrain , kalman filter , artificial intelligence , extended kalman filter , computer science , inertial navigation system , orientation (vector space) , kinematics , matching (statistics) , geography , mathematics , statistics , physics , geometry , cartography , classical mechanics
A novel method for estimating vehicle roll, pitch, and yaw using machine vision and inertial sensors is presented that is based on matching images captured from an on‐vehicle camera to a rendered representation of the surrounding terrain obtained from a three‐dimensional (3D) terrain map. U.S. Geographical Survey Digital Elevation Maps were used to create a 3D topology map of the geography surrounding the vehicle, and it is assumed in this work that large segments of the surrounding terrain are visible, particularly the horizon lines. The horizon lines seen in the captured video from the vehicle are compared to the horizon lines obtained from a rendered geography, allowing absolute comparisons between rendered and actual scene in roll, pitch, and yaw. A kinematic Kalman filter modeling an inertial navigation system then uses the scene matching to generate filtered estimates of orientation. Numerical simulations verify the performance of the Kalman filter. Experiments using an instrumented vehicle operating at the test track of the Pennsylvania Transportation Institute were performed to check the validity of the method. When compared to estimates from a global positioning system/inertial measurement unit (IMU) system, the roll, pitch, and yaw estimates from vision/IMU Kalman filter show an agreement with a (2σ) bound of 0.5, 0.26, and 0.8 deg, respectively. © 2008 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here