z-logo
Premium
A complete parameterization of clf‐based input‐to‐state stabilizing control laws
Author(s) -
Curtis J. W.,
Beard Randal W.
Publication year - 2004
Publication title -
international journal of robust and nonlinear control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.361
H-Index - 106
eISSN - 1099-1239
pISSN - 1049-8923
DOI - 10.1002/rnc.961
Subject(s) - lyapunov function , generalization , control theory (sociology) , simple (philosophy) , constraint (computer aided design) , state (computer science) , mathematics , inverse , control (management) , computer science , nonlinear system , algorithm , mathematical analysis , physics , artificial intelligence , philosophy , geometry , epistemology , quantum mechanics
Sontag's formula proves constructively that the existence of a control Lyapunov function implies asymptotic stabilizability. A similar result can be obtained for systems subject to unknown disturbances via input‐to‐state stabilizing control Lyapunov functions (ISS‐clfs) and the input‐to‐state analogue of Sontag's formula. The present paper provides a generalization of the ISS version of Sontag's formula by completely parameterizing all continuous ISS control laws that can be generated by a known ISS‐clf. When a simple inner‐product constraint is satisfied, this parameterization also conveniently describes a large family of ISS controls that solve the inverse‐optimal gain assignment problem, and it is proved that these controls possess Kalman‐type gain margins. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom