Premium
A nonlinear set‐membership filter for on‐line applications
Author(s) -
Scholte Eelco,
Campbell Mark E.
Publication year - 2003
Publication title -
international journal of robust and nonlinear control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.361
H-Index - 106
eISSN - 1099-1239
pISSN - 1049-8923
DOI - 10.1002/rnc.856
Subject(s) - filter (signal processing) , control theory (sociology) , nonlinear system , bounded function , mathematics , estimator , linearization , nonlinear filter , interval (graph theory) , differentiable function , filter design , computer science , mathematical analysis , artificial intelligence , statistics , physics , control (management) , quantum mechanics , combinatorics , computer vision
Abstract A guaranteed estimator for a general class of nonlinear systems and on‐line usage is developed and analysed. This filter bounds the linearization error, then applies a linear set‐membership filter such that stability guarantees hold for nonlinear systems. A tight bound on the linearization error is found using interval analysis. This filter recursively estimates an ellipsoidal set in which the true state lies. General assumptions include the use of bounded noises and twice continuously differentiable dynamics. When the system is uniformly observable, it is proven that the nonlinear set‐membership filter is stable. In addition, if no noise is present and the initial error is small, the error between the centre of the estimated set and the true value converges to zero. The result is an estimator which is computationally attractive and can be implemented robustly in real‐time. The proposed method is applied to a two‐state example to demonstrate the theoretical results. Copyright © 2003 John Wiley & Sons, Ltd.