z-logo
Premium
Simplex sliding mode control for autonomous six‐DOF vehicles with mono‐directional actuators: Robustness, stability, and implementation issues
Author(s) -
Bartolini Giorgio,
Pisano Alessandro,
Punta Elisabetta,
Usai Elio
Publication year - 2018
Publication title -
international journal of robust and nonlinear control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.361
H-Index - 106
eISSN - 1099-1239
pISSN - 1049-8923
DOI - 10.1002/rnc.4111
Subject(s) - control theory (sociology) , robustness (evolution) , actuator , computer science , attitude control , control engineering , thrust , robust control , sliding mode control , control system , engineering , control (management) , artificial intelligence , nonlinear system , biochemistry , chemistry , physics , electrical engineering , quantum mechanics , gene , aerospace engineering
Summary The position and attitude control of a six‐degree‐of‐freedom vehicle is dealt with in this paper. The actuation system is assumed to consist of a set of mono‐directional devices suitably located and directed. The model of the system is characterized by a large amount of uncertainties, disturbances and measurement errors. The state is assumed fully available and the navigation problems generating smooth references for the state trajectories are supposed already solved. A new attitude guidance algorithm has been developed to enhance robustness with respect to a class of nonsmooth measurement errors. The use of the simplex‐based sliding mode methodology reveals to be simultaneously suitable for the design of the actuation system (position and orientation of the actuators) and the implementation of the control strategy. The chattering phenomenon is strongly attenuated by the introduction of integrators in the input channel and, consequently to this choice, a suitable mechanism to avoid the unbounded growth of the individual thrust of the actuators is designed, while at the same time, achieving a direct control of power losses. The performances of the proposed control scheme are demonstrated by simulation by using mathematical models available in the literature.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here