z-logo
Premium
Distributed plantwide control based on differential dissipativity
Author(s) -
Wang Ruigang,
Bao Jie
Publication year - 2016
Publication title -
international journal of robust and nonlinear control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.361
H-Index - 106
eISSN - 1099-1239
pISSN - 1049-8923
DOI - 10.1002/rnc.3681
Subject(s) - setpoint , control theory (sociology) , nonlinear system , differential (mechanical device) , stability (learning theory) , bounded function , computer science , process (computing) , control (management) , chemical process , control engineering , engineering , mathematics , artificial intelligence , mathematical analysis , physics , quantum mechanics , machine learning , chemical engineering , aerospace engineering , operating system
Summary Modern chemical plants are becoming very complex, often consisting of a number of nonlinear process units (subsystems) with strong interactions due to material recycle and energy integration. The operation setpoint may need to be adjusted from time to time based on the market demand. To address the aforementioned challenges, a plantwide distributed nonlinear control scheme based on differential dissipativity is proposed in this paper, which can ensure plantwide incremental exponential stability and achieve bounded incremental L 2 gain performance. As a non‐unique property, the differential dissipativity of individual subsystem is shaped by a setpoint‐independent control structure – differential state feedback control. The dissipativity properties of subsystems and individual controllers are determined simultaneously as a large‐scale feasibility problem to ensure the plantwide stability and performance. It is converted into an LMI condition for plantwide supply rate planning and small‐scale sum‐of‐squares programming problems for individual subsystem dissipativity shaping, by using the alternating direction method of multipliers method. The proposed approach is illustrated using a chemical reactor network with a recycle stream. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here