Premium
Observer based repetitive learning control for a class of nonlinear systems with non‐parametric uncertainties
Author(s) -
Huang Deqing,
Xu JianXin,
Yang Shiping,
Jin Xu
Publication year - 2014
Publication title -
international journal of robust and nonlinear control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.361
H-Index - 106
eISSN - 1099-1239
pISSN - 1049-8923
DOI - 10.1002/rnc.3137
Subject(s) - control theory (sociology) , nonlinear system , observer (physics) , controller (irrigation) , parametric statistics , lyapunov function , computer science , convergence (economics) , separation principle , state observer , iterative learning control , rlc circuit , robustification , control (management) , mathematics , artificial intelligence , engineering , capacitor , statistics , physics , outlier , electrical engineering , quantum mechanics , voltage , agronomy , economics , biology , economic growth
Summary In this paper, a repetitive learning control (RLC) scheme is developed for a class of nonlinear systems to handle an output tracking problem, where two state observers are introduced concurrently to estimate the unavailable control system and reference states information. The estimation of reference state information is because of the lack of reference internal model in the RLC design. By virtue of the periodicity of reference signals and the associated learning capability in control mechanism, the involved unstructured nonlinear uncertainties can be handled. The Lyapunov‐like energy function method is adopted to facilitate the learning control design as well as property analysis thus achieve the asymptotical convergence of errors in state observation and output tracking simultaneously. Moreover, owing to the robustification of the learning controller that is addressed by incorporating projection, the proposed control scheme would be applicable in practice. In the end, an illustrative example is simulated to demonstrate the efficacy of the proposed RLC law. Copyright © 2014 John Wiley & Sons, Ltd.