Premium
A new result on the delay‐dependent stability of discrete systems with time‐varying delays
Author(s) -
Xu Shengyuan,
Lam James,
Zhang Baoyong,
Zou Yun
Publication year - 2013
Publication title -
international journal of robust and nonlinear control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.361
H-Index - 106
eISSN - 1099-1239
pISSN - 1049-8923
DOI - 10.1002/rnc.3006
Subject(s) - stability (learning theory) , control theory (sociology) , computer science , mathematics , control (management) , artificial intelligence , machine learning
SUMMARY This paper proposes an improvement to the delay‐dependent stability of discrete systems with time‐varying delays. The approach is based on the observation that the positive definiteness of a chosen Lyapunov–Krasovskii functional does not necessarily require all the involved symmetric matrices to be positive definite, which has been overlooked in the literature. The derived delay‐dependent stability conditions are in terms of linear matrix inequalities. It is theoretically proved that our results are less conservative than the corresponding ones obtained by requiring the positive definiteness of all the symmetric matrices in a chosen Lyapunov–Krasovskii functional. The importance of the present approach is that a great number of delay‐dependent analysis and synthesis results obtained by the aforementioned requirement in the literature can be improved by the present approach without introducing any new decision variables. Copyright © 2013 John Wiley & Sons, Ltd.